Homework 4

Question 1

For the system shown below,
a) Draw the Mechanical Circuit
b) Draw the Impedance Circuit
c) Determine the Mobility Equation

Note: the impedance equation must be simplified

Solution

Mechanical Circuit

$$
\begin{gathered}
M_{e q}=\frac{1}{Z_{e q}}=\frac{s}{m s^{2}+b s+k}+\frac{s}{b s+k}+\frac{1}{m s} \\
\rightarrow M_{e q}=\frac{\left(b s+k_{2}\right)(m s)+\left(m s^{2}+b s+k\right)(m s)+\left(m s^{2}+b s+k\right)(b s+k)}{\left(m s^{2}+b s+k\right)(b s+k)(m s)} \\
\rightarrow M_{e q}=\frac{m(m+b) s^{3}+\left(m k+2 m b+b^{2}\right) s^{2}+2 k(m+b) s+k^{2}}{\left(m^{2} b\right) s^{4}+m\left(m k+b^{2}\right) s^{3}+2 m b k s^{2}+\left(m k^{2}\right) s}
\end{gathered}
$$

Question 2

A model for a single joint of a robotic manipulator is shown in Figure below. The usual notation is used. The gear inertia is neglected and the gear reduction ratio is taken as 1: $r($ Note: $r<1$).
a) Draw a linear graph for the model, assuming that no external (load) torque is present at the robot arm.
b) Using the linear graph derive a state model for this system. The input is the motor magnetic torque T_{m} and the output is the angular speed ω_{r} of the robot arm. What is the order of the system?

(a) The linear graph is shown below.

(b) This is a $3^{\text {rd }}$ order model. The 3 energy-storage elements are independent, even though a gear box is present. Constitutive equations:

$$
\begin{aligned}
& J_{m} \frac{d \omega_{m}}{d t}=T_{1} \\
& \frac{d T_{3}}{d t}=k \omega_{3} \\
& J_{r} \frac{d \omega_{r}}{d t}=T_{6} \\
& \begin{array}{l}
T_{2}=b_{m} \omega_{2} \\
\omega_{5}=r \omega_{4} \\
T_{5}=-\frac{1}{r} T_{4}
\end{array} \text { State Space Shell }
\end{aligned}
$$

Continuity equations (node equations):

A: $-T_{m}+T_{1}+T_{2}+T_{3}=0$
B: $-T_{3}+T_{4}=0$
C: $T_{5}+T_{6}=0$
Compatibility equations (loop equations):

$$
\begin{aligned}
& -\omega+\omega_{m}=0 \\
& -\omega_{m}+\omega_{2}=0 \\
& -\omega_{m}+\omega_{3}+\omega_{4}=0 \\
& -\omega_{5}+\omega_{r}=0
\end{aligned}
$$

Eliminate unwanted variables:

$$
\begin{aligned}
& T_{1}=T_{m}-T_{2}-T_{3}=T_{m}-b_{m} \omega_{2}-T_{3}=T_{m}-b_{m} \omega_{m}-T_{3} \\
& \omega_{3}=\omega_{m}-\omega_{4}=\omega_{m}-\frac{\omega_{5}}{r}=\omega_{m}-\frac{\omega_{r}}{r}
\end{aligned}
$$

$$
T_{6}=-T_{5}=\frac{T_{4}}{r}=\frac{T_{3}}{r}
$$

By substitution into the shell, we get the following state equations:

$$
\begin{gathered}
J_{m} \frac{d \omega_{m}}{d t}=T_{m}-b_{m} \omega_{m}-T_{3} \\
\frac{d T_{3}}{d t}=k\left(\omega_{m}-\frac{\omega_{r}}{r}\right) \\
J_{r} \frac{d \omega_{r}}{d t}=\frac{T_{3}}{r}
\end{gathered}
$$

Now with: State $\boldsymbol{x}=\left[\begin{array}{lll}\omega_{m} & T_{3} & \omega_{r}\end{array}\right]^{T} ; \quad$ Input $\boldsymbol{u}=\left[T_{m}\right] ; \quad$ Output $\boldsymbol{y}=\left[\omega_{r}\right]$ we have:

$$
\begin{aligned}
\boldsymbol{A} & =\left[\begin{array}{ccc}
-b_{m} / J_{m} & -1 / J_{m} & 0 \\
k & 0 & -k / r \\
0 & 1 /\left(r J_{r}\right) & 0
\end{array}\right] ; \quad \boldsymbol{B}=\left[\begin{array}{c}
1 / J_{m} \\
0 \\
0
\end{array}\right] \\
& \boldsymbol{C}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] ; \boldsymbol{D}=0
\end{aligned}
$$

